Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 49(24): 14334-42, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26523324

RESUMO

Self-sustaining treatment for active remediation (STAR) is an emerging, smoldering-based technology for nonaqueous-phase liquid (NAPL) remediation. This work presents the first in situ field evaluation of STAR. Pilot field tests were performed at 3.0 m (shallow test) and 7.9 m (deep test) below ground surface within distinct lithological units contaminated with coal tar at a former industrial facility. Self-sustained smoldering (i.e., after the in-well ignition heater was terminated) was demonstrated below the water table for the first time. The outward propagation of a NAPL smoldering front was mapped, and the NAPL destruction rate was quantified in real time. A total of 3700 kg of coal tar over 12 days in the shallow test and 860 kg over 11 days in the deep test was destroyed; less than 2% of total mass removed was volatilized. Self-sustaining propagation was relatively uniform radially outward in the deep test, achieving a radius of influence of 3.7 m; strong permeability contrasts and installed barriers influenced the front propagation geometry in the shallow test. Reductions in soil hydrocarbon concentrations of 99.3% and 97.3% were achieved in the shallow and deep tests, respectively. Overall, this provides the first field evaluation of STAR and demonstrates that it is effective in situ and under a variety of conditions and provides the information necessary for designing the full-scale site treatment.


Assuntos
Alcatrão/química , Poluição Ambiental/análise , Recuperação e Remediação Ambiental/métodos , Poluentes do Solo/análise , Carvão Mineral , Hidrocarbonetos/isolamento & purificação , Peso Molecular , Petróleo/análise , Projetos Piloto , Solo , Temperatura , Volatilização
2.
Environ Pollut ; 193: 79-87, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25014015

RESUMO

With the aim of investigating the effects of carbonaceous sorbent amendment on plant health and end point contaminant bioavailability, plant experiments were set up to grow maize (Zea mays) in soil contaminated with polycyclic aromatic hydrocarbons (PAHs) and metals. Maize and pine derived biochars, as well as a commercial grade activated carbon, were used as amendments. Plant growth characteristics, such as chlorophyll content and shoot to root biomass, improved with sorbent amendment to varying extents and contaminant uptake to shoots was consistently reduced in amended soils. By further defining the conditions in which sorbent amended soils successfully reduce contaminant bioavailability and improve plant growth, this work will inform field scale remediation efforts.


Assuntos
Carvão Vegetal/química , Recuperação e Remediação Ambiental , Metais/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes do Solo/toxicidade , Zea mays/crescimento & desenvolvimento , Metais/análise , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/análise , Solo/química , Poluentes do Solo/análise , Zea mays/metabolismo
3.
J Hazard Mater ; 268: 51-60, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24468525

RESUMO

Smouldering remediation is a process that has been introduced recently to address non-aqueous phase liquid (NAPL) contamination in soils and other porous media. Previous work demonstrated this process to be highly effective across a wide range of contaminants and soil conditions at the bench scale. In this work, a suite of 12 experiments explored the effectiveness of the process as operating scale was increased 1000-fold from the bench (0.003m(3)) to intermediate (0.3m(3)) and pilot field-scale (3m(3)) with coal tar and petrochemical NAPLs. As scale increased, remediation efficiency of 97-99.95% was maintained. Smouldering propagation velocities of 0.6-14×10(-5)m/s at Darcy air fluxes of 1.54-9.15cm/s were consistent with observations in previous bench studies, as was the dependence on air flux. The pilot field-scale experiments demonstrated the robustness of the process despite heterogeneities, localised operation, controllability through airflow supply, and the importance of a minimum air flux for self-sustainability. Experiments at the intermediate scale established a minimum-observed, not minimum-possible, initial concentration of 12,000mg/kg in mixed oil waste, providing support for the expectation that lower thresholds for self-sustaining smouldering decreased with increasing scale. Once the threshold was exceeded, basic process characteristics of average peak temperature, destructive efficiency, and treatment velocity were relatively independent of scale.


Assuntos
Recuperação e Remediação Ambiental/métodos , Sedimentos Geológicos/química , Modelos Teóricos , Poluentes do Solo/isolamento & purificação , Solo/química , Recuperação e Remediação Ambiental/instrumentação , Desenho de Equipamento , Transição de Fase , Projetos Piloto , Porosidade , Gerenciamento de Resíduos
4.
Environ Sci Technol ; 45(7): 2980-6, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21351763

RESUMO

Smoldering combustion has been introduced recently as a potential remediation strategy for soil contaminated by nonaqueous phase liquids (NAPLs). Published proof-of-concept experiments demonstrated that the process can be self-sustaining (i.e., requires energy input only to start the process) and achieve essentially complete remediation of the contaminated soil. Those initial experiments indicated that the process may be applicable across a broad range of NAPLs and soils. This work presents the results of a series of bench-scale experiments that examine in detail the sensitivity of the process to a range of key parameters, including contaminant concentration, water saturation, soil type, and air flow rates for two contaminants, coal tar and crude oil. Smoldering combustion was observed to be self-sustaining in the range 28,400 to 142,000 mg/kg for coal tar and in the range 31,200 to 104,000 mg/kg for crude oil, for the base case air flux. The process remained self-sustaining and achieved effective remediation across a range of initial water concentrations (0 to 177,000 mg/kg water) despite extended ignition times and decreased temperatures and velocities of the reaction front. The process also exhibited self-sustaining and effective remediation behavior across a range of fine to coarse sand grain sizes up to a threshold maximum value between 6 mm and 10 mm. Propagation velocity is observed to be highly dependent on air flux, and smoldering was observed to be self-sustaining down to an air Darcy flux of at least 0.5 cm/s for both contaminants. The extent of remediation in these cases was determined to be at least 99.5% and 99.9% for crude oil and coal tar, respectively. Moreover, no physical evidence of contamination was detected in the treatment zone for any case where a self-sustaining reaction was achieved. Lateral heat losses to the external environment were observed to significantly affect the smoldering process at the bench scale, suggesting that the field-scale lower bounds on concentration and air flux and upper bound on grain size were not achieved; larger scale experiments and field trials where lateral heat losses are much less significant are necessary to define these process limits for the purposes of field application. This work provides valuable design data for pilot field trials of both in situ and ex situ smoldering remediation applications.


Assuntos
Recuperação e Remediação Ambiental/métodos , Compostos Orgânicos/química , Poluentes do Solo/química , Alcatrão/análise , Alcatrão/química , Creosoto/análise , Creosoto/química , Hidrocarbonetos/análise , Hidrocarbonetos/química , Incineração/métodos , Compostos Orgânicos/análise , Bifenilos Policlorados/análise , Bifenilos Policlorados/química , Solo/química , Poluentes do Solo/análise
5.
J Contam Hydrol ; 90(3-4): 125-45, 2007 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-17174439

RESUMO

Field estimation of air permeability is important in the design and operation of soil-vapor extraction systems. Previous models have examined airflow in homogenous soils, incorporating leakage through a low-permeability cap either as a correction to the airflow equation or as a boundary condition. The dual leakage model solution developed here improves upon the previous efforts by adding a leaky lower boundary condition, allowing for the examination of airflow in heterogeneous layered soils. The dual leakage model is applied to the evaluation of pump tests at a pilot soil-vapor extraction system at the Savannah River Site in South Carolina. A thick, low-permeability, stiff clay layer divides the stratigraphy at the site into two units for evaluation. A modified version of the previous model, using the water table as the impermeable lower boundary, is used to evaluate the permeability of the low-permeability stiff clay layer (3.2 x 10(-10) cm(2)) and permeable sand (7.2 x 10(-7) cm(2)) beneath it. The stiff clay permeability estimate is used in the evaluation of the shallow unit. Permeability estimates of the shallow sand (3.8 x 10(-7) cm(2)) and kaolin cap (1.5 x 10(-9)cm(2)) were obtained with the dual leakage model. The shallow unit was evaluated using the previous model for comparison. The effects of anisotropy were investigated with a series of model simulations based on the shallow unit solution. The anisotropy sensitivity analysis suggests that increased anisotropy ratio or decreased axial permeability has a significant impact on the velocity profile at the lower boundary, especially at high values of the anisotropy ratio. This result may increase estimates of SVE removal rates for contaminants located at the interface of the lower boundary, typical of chlorinated solvent contamination.


Assuntos
Movimentos do Ar , Modelos Teóricos , Poluentes do Solo , Monitoramento Ambiental , Permeabilidade , Porosidade , Solo , Gerenciamento de Resíduos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...